arXiv:2201.03833 [math.AG]AbstractReferencesReviewsResources
Universality of Descendent Integrals over Moduli Spaces of Stable Sheaves on $K3$ Surfaces
Published 2022-01-11, updated 2022-10-13Version 3
We interprete results of Markman on monodromy operators as a universality statement for descendent integrals over moduli spaces of stable sheaves on $K3$ surfaces. This yields effective methods to reduce these descendent integrals to integrals over the punctual Hilbert scheme of the $K3$ surface. As an application we establish the higher rank Segre-Verlinde correspondence for $K3$ surfaces as conjectured by G\"ottsche and Kool.
Journal: SIGMA 18 (2022), 076, 15 pages
Categories: math.AG
Keywords: descendent integrals, moduli spaces, stable sheaves, higher rank segre-verlinde correspondence, punctual hilbert scheme
Tags: journal article
Related articles: Most relevant | Search more
Moduli spaces of stable sheaves on abelian surfaces
Descendent integrals and tautological rings of moduli spaces of curves
arXiv:math/0012260 [math.AG] (Published 2000-12-29)
The Hodge Numbers of the Moduli Spaces of Vector Bundles over a Riemann surface