arXiv Analytics

Sign in

arXiv:2201.03833 [math.AG]AbstractReferencesReviewsResources

Universality of Descendent Integrals over Moduli Spaces of Stable Sheaves on $K3$ Surfaces

Georg Oberdieck

Published 2022-01-11, updated 2022-10-13Version 3

We interprete results of Markman on monodromy operators as a universality statement for descendent integrals over moduli spaces of stable sheaves on $K3$ surfaces. This yields effective methods to reduce these descendent integrals to integrals over the punctual Hilbert scheme of the $K3$ surface. As an application we establish the higher rank Segre-Verlinde correspondence for $K3$ surfaces as conjectured by G\"ottsche and Kool.

Related articles: Most relevant | Search more
arXiv:math/0009001 [math.AG] (Published 2000-09-01, updated 2001-04-25)
Moduli spaces of stable sheaves on abelian surfaces
arXiv:0912.0584 [math.AG] (Published 2009-12-03, updated 2010-04-11)
Descendent integrals and tautological rings of moduli spaces of curves
arXiv:math/0012260 [math.AG] (Published 2000-12-29)
The Hodge Numbers of the Moduli Spaces of Vector Bundles over a Riemann surface