{ "id": "2201.03833", "version": "v3", "published": "2022-01-11T08:31:17.000Z", "updated": "2022-10-13T07:02:02.000Z", "title": "Universality of Descendent Integrals over Moduli Spaces of Stable Sheaves on $K3$ Surfaces", "authors": [ "Georg Oberdieck" ], "journal": "SIGMA 18 (2022), 076, 15 pages", "doi": "10.3842/SIGMA.2022.076", "categories": [ "math.AG" ], "abstract": "We interprete results of Markman on monodromy operators as a universality statement for descendent integrals over moduli spaces of stable sheaves on $K3$ surfaces. This yields effective methods to reduce these descendent integrals to integrals over the punctual Hilbert scheme of the $K3$ surface. As an application we establish the higher rank Segre-Verlinde correspondence for $K3$ surfaces as conjectured by G\\\"ottsche and Kool.", "revisions": [ { "version": "v3", "updated": "2022-10-13T07:02:02.000Z" } ], "analyses": { "keywords": [ "descendent integrals", "moduli spaces", "stable sheaves", "higher rank segre-verlinde correspondence", "punctual hilbert scheme" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }