arXiv:2112.07132 [math.RT]AbstractReferencesReviewsResources
Characters of irreducible Whittaker modules for complex semisimple Lie algebras
Published 2021-12-14, updated 2022-08-29Version 2
Let $\mathfrak{g}$ be a complex semisimple Lie algebra. We give a description of characters of irreducible Whittaker modules for $\mathfrak{g}$ with any infinitesimal character, along with a Kazhdan-Lusztig algorithm for computing them. This generalizes Milicic-Soergel's and Romanov's results for integral infinitesimal characters.
Comments: Added more explanation on conceptual ideas. Rearranged contents. Simplified redundant notations
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2002.01540 [math.RT] (Published 2020-02-04)
Four examples of Beilinson-Bernstein localization
arXiv:1406.1453 [math.RT] (Published 2014-06-05)
On Lusztig's $q$-analogues of all weight multiplicities of a representation
arXiv:1305.4104 [math.RT] (Published 2013-04-29)
Weights of simple highest weight modules over a complex semisimple Lie algebra