arXiv Analytics

Sign in

arXiv:2002.01540 [math.RT]AbstractReferencesReviewsResources

Four examples of Beilinson-Bernstein localization

Anna Romanov

Published 2020-02-04Version 1

Let $\mathfrak{g}$ be a complex semisimple Lie algebra. The Beilinson-Bernstein localization theorem establishes an equivalence of the category of $\mathfrak{g}$-modules of a fixed infinitesimal character and a category of modules over a twisted sheaf of differential operators on the flag variety of $\mathfrak{g}$. In this expository paper, we give four detailed examples of this theorem when $\mathfrak{g}=\mathfrak{sl}(2,\mathbb{C})$. Specifically, we describe the $\mathcal{D}$-modules associated to finite-dimensional irreducible $\mathfrak{g}$-modules, Verma modules, Whittaker modules, discrete series representations of $SL(2,\mathbb{R})$, and principal series representations of $SL(2,\mathbb{R})$.

Related articles: Most relevant | Search more
arXiv:2404.05277 [math.RT] (Published 2024-04-08)
Dynkin abelianisations of flag varieties
arXiv:1406.1453 [math.RT] (Published 2014-06-05)
On Lusztig's $q$-analogues of all weight multiplicities of a representation
arXiv:1305.4104 [math.RT] (Published 2013-04-29)
Weights of simple highest weight modules over a complex semisimple Lie algebra