{ "id": "2002.01540", "version": "v1", "published": "2020-02-04T21:17:41.000Z", "updated": "2020-02-04T21:17:41.000Z", "title": "Four examples of Beilinson-Bernstein localization", "authors": [ "Anna Romanov" ], "comment": "21 pages; preliminary version, comments welcome", "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak{g}$ be a complex semisimple Lie algebra. The Beilinson-Bernstein localization theorem establishes an equivalence of the category of $\\mathfrak{g}$-modules of a fixed infinitesimal character and a category of modules over a twisted sheaf of differential operators on the flag variety of $\\mathfrak{g}$. In this expository paper, we give four detailed examples of this theorem when $\\mathfrak{g}=\\mathfrak{sl}(2,\\mathbb{C})$. Specifically, we describe the $\\mathcal{D}$-modules associated to finite-dimensional irreducible $\\mathfrak{g}$-modules, Verma modules, Whittaker modules, discrete series representations of $SL(2,\\mathbb{R})$, and principal series representations of $SL(2,\\mathbb{R})$.", "revisions": [ { "version": "v1", "updated": "2020-02-04T21:17:41.000Z" } ], "analyses": { "subjects": [ "17B10", "14F10" ], "keywords": [ "complex semisimple lie algebra", "beilinson-bernstein localization theorem establishes", "discrete series representations", "principal series representations", "flag variety" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }