arXiv Analytics

Sign in

arXiv:2112.03607 [math.NT]AbstractReferencesReviewsResources

On divisors of sums of polynomials

László Mérai

Published 2021-12-07, updated 2022-06-27Version 3

Let $\mathcal{A}$ and $\mathcal{B}$ be sets of polynomials of degree $n$ over a finite field. We show, that if $\mathcal{A}$ and $\mathcal{B}$ are large enough, then $A+B$ has an irreducible divisor of large degree for some $A\in\mathcal{A}$ and $B\in \mathcal{B}$.

Categories: math.NT
Related articles: Most relevant | Search more
arXiv:math/0412367 [math.NT] (Published 2004-12-18, updated 2005-03-31)
Endomorphism Rings and Isogenies Classes for Drinfeld Modules of Rank 2 Over Finite Fields
arXiv:1212.3465 [math.NT] (Published 2012-12-14, updated 2014-03-18)
Recursive towers of curves over finite fields using graph theory
arXiv:0905.1642 [math.NT] (Published 2009-05-11, updated 2011-11-19)
Fast construction of irreducible polynomials over finite fields