{ "id": "2112.03607", "version": "v3", "published": "2021-12-07T09:55:17.000Z", "updated": "2022-06-27T11:00:13.000Z", "title": "On divisors of sums of polynomials", "authors": [ "László Mérai" ], "categories": [ "math.NT" ], "abstract": "Let $\\mathcal{A}$ and $\\mathcal{B}$ be sets of polynomials of degree $n$ over a finite field. We show, that if $\\mathcal{A}$ and $\\mathcal{B}$ are large enough, then $A+B$ has an irreducible divisor of large degree for some $A\\in\\mathcal{A}$ and $B\\in \\mathcal{B}$.", "revisions": [ { "version": "v3", "updated": "2022-06-27T11:00:13.000Z" } ], "analyses": { "keywords": [ "polynomials", "large degree", "finite field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }