arXiv Analytics

Sign in

arXiv:2111.08775 [math.NT]AbstractReferencesReviewsResources

On two congruence conjectures of Z.-W. Sun involving Franel numbers

Guo-Shuai Mao, Yan Liu

Published 2021-11-16, updated 2021-12-03Version 3

In this paper, we mainly prove the following conjectures of Z.-W. Sun \cite{S13}: Let $p>2$ be a prime. If $p=x^2+3y^2$ with $x,y\in\mathbb{Z}$ and $x\equiv1\pmod 3$, then $$x\equiv\frac14\sum_{k=0}^{p-1}(3k+4)\frac{f_k} {2^k}\equiv\frac12\sum_{k=0}^{p-1}(3k+2)\frac{f_k}{(-4)^k}\pmod{p^2},$$ and if $p\equiv1\pmod3$, then $$\sum_{k=0}^{p-1}\frac{f_k}{2^k}\equiv\sum_{k=0}^{p-1}\frac{f_k}{(-4)^k}\pmod{p^3},$$ where $f_n=\sum_{k=0}^n\binom{n}k^3$ stands for the $n$th Franel number.

Comments: 20 pages, revised some typos
Journal: Proceedings of the Royal Society of Edinburgh Section A-Mathematics (2024)
Categories: math.NT, math.CO
Related articles:
arXiv:2111.08778 [math.NT] (Published 2021-11-16, updated 2023-05-31)
Proof of some congruence conjectures of Z.-H. Sun involving Apéry-like numbers
arXiv:1909.01508 [math.NT] (Published 2019-09-04)
Taylor coefficients of the Jacobi $θ_{3}\left( q \right)$ function