{ "id": "2111.08775", "version": "v3", "published": "2021-11-16T20:52:30.000Z", "updated": "2021-12-03T14:05:14.000Z", "title": "On two congruence conjectures of Z.-W. Sun involving Franel numbers", "authors": [ "Guo-Shuai Mao", "Yan Liu" ], "comment": "20 pages, revised some typos", "journal": "Proceedings of the Royal Society of Edinburgh Section A-Mathematics (2024)", "doi": "10.1017/prm.2023.41", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper, we mainly prove the following conjectures of Z.-W. Sun \\cite{S13}: Let $p>2$ be a prime. If $p=x^2+3y^2$ with $x,y\\in\\mathbb{Z}$ and $x\\equiv1\\pmod 3$, then $$x\\equiv\\frac14\\sum_{k=0}^{p-1}(3k+4)\\frac{f_k} {2^k}\\equiv\\frac12\\sum_{k=0}^{p-1}(3k+2)\\frac{f_k}{(-4)^k}\\pmod{p^2},$$ and if $p\\equiv1\\pmod3$, then $$\\sum_{k=0}^{p-1}\\frac{f_k}{2^k}\\equiv\\sum_{k=0}^{p-1}\\frac{f_k}{(-4)^k}\\pmod{p^3},$$ where $f_n=\\sum_{k=0}^n\\binom{n}k^3$ stands for the $n$th Franel number.", "revisions": [ { "version": "v3", "updated": "2021-12-03T14:05:14.000Z" } ], "analyses": { "keywords": [ "congruence conjectures", "th franel number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }