arXiv Analytics

Sign in

arXiv:2111.05913 [math.AP]AbstractReferencesReviewsResources

An Agmon-Allegretto-Piepenbrink principle for Schroedinger operators

Stefano Buccheri, Luigi Orsina, Augusto C. Ponce

Published 2021-11-10Version 1

We prove that each Borel function $V : \Omega \to [-\infty, +\infty]$ defined on an open subset $\Omega \subset \mathbb{R}^{N}$ induces a decomposition $\Omega = S \cup \bigcup_{i} D_{i}$ such that every function in $W^{1,2}_{0}(\Omega) \cap L^{2}(\Omega; V^{+} dx)$ is zero almost everywhere on $S$ and existence of nonnegative supersolutions of $-\Delta + V$ on each component $D_{i}$ yields nonnegativity of the associated quadratic form $\int_{D_{i}} (|\nabla \xi|^2+V\xi^2)$.

Related articles: Most relevant | Search more
arXiv:math/0610096 [math.AP] (Published 2006-10-03, updated 2008-08-14)
Spectral multipliers for Schroedinger operators with Poeschl-Teller potential
arXiv:math/0609185 [math.AP] (Published 2006-09-06)
Littlewood-Paley theorem for Schroedinger operators
arXiv:1702.04572 [math.AP] (Published 2017-02-15)
Hopf potentials for Schroedinger operators