{ "id": "2111.05913", "version": "v1", "published": "2021-11-10T20:15:17.000Z", "updated": "2021-11-10T20:15:17.000Z", "title": "An Agmon-Allegretto-Piepenbrink principle for Schroedinger operators", "authors": [ "Stefano Buccheri", "Luigi Orsina", "Augusto C. Ponce" ], "categories": [ "math.AP", "math.FA" ], "abstract": "We prove that each Borel function $V : \\Omega \\to [-\\infty, +\\infty]$ defined on an open subset $\\Omega \\subset \\mathbb{R}^{N}$ induces a decomposition $\\Omega = S \\cup \\bigcup_{i} D_{i}$ such that every function in $W^{1,2}_{0}(\\Omega) \\cap L^{2}(\\Omega; V^{+} dx)$ is zero almost everywhere on $S$ and existence of nonnegative supersolutions of $-\\Delta + V$ on each component $D_{i}$ yields nonnegativity of the associated quadratic form $\\int_{D_{i}} (|\\nabla \\xi|^2+V\\xi^2)$.", "revisions": [ { "version": "v1", "updated": "2021-11-10T20:15:17.000Z" } ], "analyses": { "subjects": [ "35J10", "35R05", "46E35", "35B05", "35J15", "35J20" ], "keywords": [ "schroedinger operators", "agmon-allegretto-piepenbrink principle", "open subset", "borel function", "yields nonnegativity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }