arXiv Analytics

Sign in

arXiv:2111.03875 [math.AP]AbstractReferencesReviewsResources

A stability result for elliptic equations with singular nonlinearity and its applications to homogenization problems

Takanobu Hara

Published 2021-11-06Version 1

We consider model semilinear elliptic equations of the type \[ \begin{cases} - \mathrm{div} (A(x) \nabla u) = f u^{- \lambda}, \quad u > 0 \quad \text{in} \ \Omega, \\ u \in H_{0}^{1}(\Omega), \end{cases} \] where $\Omega$ is a bounded domain in $\mathbf{R}^{N}$, $N \ge 1$, $A \in L^{\infty}(\Omega)^{N \times N}$ is a coercive matrix, $0 < \lambda \le 1$ and $f$ is a nonnegative function in $L^{1}_{loc}(\Omega)$, or more generally, nonnegative Radon measure on $\Omega$. We discuss $H^{1}$-stability of $u$ under a minimal assumption on $f$. Additionally, we apply the result to homogenization problems.

Related articles: Most relevant | Search more
arXiv:1207.6375 [math.AP] (Published 2012-07-26, updated 2012-07-30)
Vector analysis on fractals and applications
arXiv:math/0608312 [math.AP] (Published 2006-08-13)
Analyzability in the context of PDEs and applications
arXiv:1209.0483 [math.AP] (Published 2012-09-03, updated 2013-10-19)
Applications of Fourier analysis in homogenization of Dirichlet problem II. $L^p$ estimates