{ "id": "2111.03875", "version": "v1", "published": "2021-11-06T12:57:48.000Z", "updated": "2021-11-06T12:57:48.000Z", "title": "A stability result for elliptic equations with singular nonlinearity and its applications to homogenization problems", "authors": [ "Takanobu Hara" ], "journal": "J. Math. Anal. Appl. 528, 1 (2023)", "doi": "10.1016/j.jmaa.2023.127509", "categories": [ "math.AP" ], "abstract": "We consider model semilinear elliptic equations of the type \\[ \\begin{cases} - \\mathrm{div} (A(x) \\nabla u) = f u^{- \\lambda}, \\quad u > 0 \\quad \\text{in} \\ \\Omega, \\\\ u \\in H_{0}^{1}(\\Omega), \\end{cases} \\] where $\\Omega$ is a bounded domain in $\\mathbf{R}^{N}$, $N \\ge 1$, $A \\in L^{\\infty}(\\Omega)^{N \\times N}$ is a coercive matrix, $0 < \\lambda \\le 1$ and $f$ is a nonnegative function in $L^{1}_{loc}(\\Omega)$, or more generally, nonnegative Radon measure on $\\Omega$. We discuss $H^{1}$-stability of $u$ under a minimal assumption on $f$. Additionally, we apply the result to homogenization problems.", "revisions": [ { "version": "v1", "updated": "2021-11-06T12:57:48.000Z" } ], "analyses": { "subjects": [ "35J61", "35J25", "35B27" ], "keywords": [ "homogenization problems", "stability result", "singular nonlinearity", "applications", "model semilinear elliptic equations" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }