arXiv Analytics

Sign in

arXiv:2111.03513 [math.FA]AbstractReferencesReviewsResources

Upper and lower bounds for Dunkl heat kernel

Jacek Dziubański, Agnieszka Hejna

Published 2021-11-05, updated 2021-11-29Version 2

On $\mathbb R^N$ equipped with a normalized root system $R$, a multiplicity function $k(\alpha) > 0$, and the associated measure $$ dw(\mathbf x)=\prod_{\alpha\in R}|\langle \mathbf x,\alpha\rangle|^{k(\alpha)}\, d\mathbf x, $$ let $h_t(\mathbf x,\mathbf y)$ denote the heat kernel of the semigroup generated by the Dunkl Laplace operator $\Delta_k$. Let $d(\mathbf x,\mathbf y)=\min_{\sigma\in G} \| \mathbf x-\sigma(\mathbf y)\|$, where $G$ is the reflection group associated with $R$. We derive the following upper and lower bounds for $h_t(\mathbf x,\mathbf y)$: for all $c_l>1/4$ and $0<c_u<1/4$ there are constants $C_l,C_u>0$ such that $$ C_{l}w(B(\mathbf{x},\sqrt{t}))^{-1}e^{-c_{l}\frac{d(\mathbf{x},\mathbf{y})^2}{t}} \Lambda(\mathbf x,\mathbf y,t) \leq h_t(\mathbf{x},\mathbf{y}) \leq C_{u}w(B(\mathbf{x},\sqrt{t}))^{-1}e^{-c_{u}\frac{d(\mathbf{x},\mathbf{y})^2}{t}} \Lambda(\mathbf x,\mathbf y,t), $$ where $\Lambda(\mathbf x,\mathbf y,t)$ can be expressed by means of some rational functions of $\| \mathbf x-\sigma(\mathbf y)\|/\sqrt{t}$. An exact formula for $\Lambda(\mathbf x,\mathbf y,t)$ is provided.

Comments: 17 pages, we corrected some typos
Categories: math.FA
Subjects: 44A20, 35K08, 33C52, 43A32, 39A70
Related articles: Most relevant | Search more
arXiv:2204.03443 [math.FA] (Published 2022-04-07)
On Dunkl Schrödinger semigroups with Green bounded potentials
arXiv:1801.09279 [math.FA] (Published 2018-01-28)
Topological Poincaré type inequalities and lower bounds on the infimum of the spectrum for graphs
arXiv:1108.3802 [math.FA] (Published 2011-08-18, updated 2011-08-19)
Upper and Lower Bounds for Kronecker Constants of Three-Element Sets of Integers