{ "id": "2111.03513", "version": "v2", "published": "2021-11-05T14:11:42.000Z", "updated": "2021-11-29T15:51:01.000Z", "title": "Upper and lower bounds for Dunkl heat kernel", "authors": [ "Jacek DziubaƄski", "Agnieszka Hejna" ], "comment": "17 pages, we corrected some typos", "categories": [ "math.FA" ], "abstract": "On $\\mathbb R^N$ equipped with a normalized root system $R$, a multiplicity function $k(\\alpha) > 0$, and the associated measure $$ dw(\\mathbf x)=\\prod_{\\alpha\\in R}|\\langle \\mathbf x,\\alpha\\rangle|^{k(\\alpha)}\\, d\\mathbf x, $$ let $h_t(\\mathbf x,\\mathbf y)$ denote the heat kernel of the semigroup generated by the Dunkl Laplace operator $\\Delta_k$. Let $d(\\mathbf x,\\mathbf y)=\\min_{\\sigma\\in G} \\| \\mathbf x-\\sigma(\\mathbf y)\\|$, where $G$ is the reflection group associated with $R$. We derive the following upper and lower bounds for $h_t(\\mathbf x,\\mathbf y)$: for all $c_l>1/4$ and $00$ such that $$ C_{l}w(B(\\mathbf{x},\\sqrt{t}))^{-1}e^{-c_{l}\\frac{d(\\mathbf{x},\\mathbf{y})^2}{t}} \\Lambda(\\mathbf x,\\mathbf y,t) \\leq h_t(\\mathbf{x},\\mathbf{y}) \\leq C_{u}w(B(\\mathbf{x},\\sqrt{t}))^{-1}e^{-c_{u}\\frac{d(\\mathbf{x},\\mathbf{y})^2}{t}} \\Lambda(\\mathbf x,\\mathbf y,t), $$ where $\\Lambda(\\mathbf x,\\mathbf y,t)$ can be expressed by means of some rational functions of $\\| \\mathbf x-\\sigma(\\mathbf y)\\|/\\sqrt{t}$. An exact formula for $\\Lambda(\\mathbf x,\\mathbf y,t)$ is provided.", "revisions": [ { "version": "v2", "updated": "2021-11-29T15:51:01.000Z" } ], "analyses": { "subjects": [ "44A20", "35K08", "33C52", "43A32", "39A70" ], "keywords": [ "dunkl heat kernel", "lower bounds", "dunkl laplace operator", "multiplicity function", "normalized root system" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }