arXiv Analytics

Sign in

arXiv:2111.03385 [math.AP]AbstractReferencesReviewsResources

A monotonicity result for the first Steklov-Dirichlet Laplacian eigenvalue

Nunzia Gavitone, Gianpaolo Piscitelli

Published 2021-11-05, updated 2021-12-01Version 2

In this paper, we consider the first Steklov-Dirichlet eigenvalue of the Laplace operator in annular domain with a spherical hole. We prove a monotonicity result with respect the hole when the outer region is centrally symmetrc.

Related articles: Most relevant | Search more
arXiv:2007.10147 [math.AP] (Published 2020-07-17)
Shape monotonicity of the first Steklov-Dirichlet eigenvalue on eccentric annuli
arXiv:2212.00224 [math.AP] (Published 2022-12-01)
Neumann problem on a torus
arXiv:2301.12205 [math.AP] (Published 2023-01-28)
On a class of infinite semipositone problems for (p,q) Laplace operator