{ "id": "2111.03385", "version": "v2", "published": "2021-11-05T10:46:57.000Z", "updated": "2021-12-01T11:23:19.000Z", "title": "A monotonicity result for the first Steklov-Dirichlet Laplacian eigenvalue", "authors": [ "Nunzia Gavitone", "Gianpaolo Piscitelli" ], "categories": [ "math.AP" ], "abstract": "In this paper, we consider the first Steklov-Dirichlet eigenvalue of the Laplace operator in annular domain with a spherical hole. We prove a monotonicity result with respect the hole when the outer region is centrally symmetrc.", "revisions": [ { "version": "v2", "updated": "2021-12-01T11:23:19.000Z" } ], "analyses": { "keywords": [ "first steklov-dirichlet laplacian eigenvalue", "monotonicity result", "first steklov-dirichlet eigenvalue", "outer region", "laplace operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }