arXiv Analytics

Sign in

arXiv:2110.14235 [math.DS]AbstractReferencesReviewsResources

Algebraic intersection in regular polygons

Julien Boulanger, Erwan Lanneau, Daniel Massart

Published 2021-10-27, updated 2022-12-20Version 2

We study the function $$\mbox{KVol} : (X,\omega)\mapsto \mbox{Vol} (X,\omega) \sup_{\alpha,\beta} \frac{\mbox{Int} (\alpha,\beta)}{l_g (\alpha) l_g (\beta)}$$ defined on the moduli spaces of translation surfaces. More precisely, let $\mathcal T_n$ be the Teichm\"uller discs of the original Veech surface $(X_n,\omega_n)$ arising from right-angled triangle with angles $(\pi/2,\pi/n,(n-2)\pi/2n)$ by the unfolding construction for $n\geq 5$. For $n \equiv 1 \mod 2$ and any $(X,\omega)\in \mathcal T_n$, we establish the (sharp) bounds $$ \frac{n}{2} \cot \frac{\pi}{n} \leq \mbox{KVol}(X,\omega) \leq \frac{n}{2} \cot \frac{\pi}{n} \cdot \frac1{\sin \frac{2\pi}{n}}.$$ The lower bound is uniquely realized at $(X_n,\omega_n)$.

Comments: New version with the first author added and completely different methods. We focus on the $n=2m+1$ case, the $n=4m$ case is dealt with in a forthcoming paper by the first author. 30pages, 15 figures
Categories: math.DS, math.DG
Subjects: 37D40, 32G15, 53C22
Related articles: Most relevant | Search more
arXiv:2007.11995 [math.DS] (Published 2020-07-21)
Algebraic intersection for translation surfaces in the stratum $\mathcal{H}(2)$
arXiv:2407.05937 [math.DS] (Published 2024-06-20)
Edge Geometry of Regular Polygons -- Part 2
arXiv:2007.10847 [math.DS] (Published 2020-07-21)
Algebraic intersection for translation sufaces in a family of Teichműller disks