{ "id": "2110.14235", "version": "v2", "published": "2021-10-27T07:39:57.000Z", "updated": "2022-12-20T06:49:46.000Z", "title": "Algebraic intersection in regular polygons", "authors": [ "Julien Boulanger", "Erwan Lanneau", "Daniel Massart" ], "comment": "New version with the first author added and completely different methods. We focus on the $n=2m+1$ case, the $n=4m$ case is dealt with in a forthcoming paper by the first author. 30pages, 15 figures", "categories": [ "math.DS", "math.DG" ], "abstract": "We study the function $$\\mbox{KVol} : (X,\\omega)\\mapsto \\mbox{Vol} (X,\\omega) \\sup_{\\alpha,\\beta} \\frac{\\mbox{Int} (\\alpha,\\beta)}{l_g (\\alpha) l_g (\\beta)}$$ defined on the moduli spaces of translation surfaces. More precisely, let $\\mathcal T_n$ be the Teichm\\\"uller discs of the original Veech surface $(X_n,\\omega_n)$ arising from right-angled triangle with angles $(\\pi/2,\\pi/n,(n-2)\\pi/2n)$ by the unfolding construction for $n\\geq 5$. For $n \\equiv 1 \\mod 2$ and any $(X,\\omega)\\in \\mathcal T_n$, we establish the (sharp) bounds $$ \\frac{n}{2} \\cot \\frac{\\pi}{n} \\leq \\mbox{KVol}(X,\\omega) \\leq \\frac{n}{2} \\cot \\frac{\\pi}{n} \\cdot \\frac1{\\sin \\frac{2\\pi}{n}}.$$ The lower bound is uniquely realized at $(X_n,\\omega_n)$.", "revisions": [ { "version": "v2", "updated": "2022-12-20T06:49:46.000Z" } ], "analyses": { "subjects": [ "37D40", "32G15", "53C22" ], "keywords": [ "regular polygons", "algebraic intersection", "original veech surface", "moduli spaces", "translation surfaces" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }