arXiv:2109.13330 [math.NT]AbstractReferencesReviewsResources
Arithmetic Statistics and noncommutative Iwasawa Theory
Debanjana Kundu, Antonio Lei, Anwesh Ray
Published 2021-09-27, updated 2021-12-13Version 2
Let $p$ be an odd prime. Associated to a pair $(E, \mathcal{F}_\infty)$ consisting of a rational elliptic curve $E$ and a $p$-adic Lie extension $\mathcal{F}_\infty$ of $\mathbb{Q}$, is the $p$-primary Selmer group $Sel_{p^\infty}(E/\mathcal{F}_\infty)$ of $E$ over $\mathcal{F}_\infty$. In this paper, we study the arithmetic statistics for the algebraic structure of this Selmer group. The results provide insights into the asymptotics for the growth of Mordell--Weil ranks of elliptic curves in noncommutative towers.
Comments: 50 pages, minor corrections
Journal: Doc. Math. 27, 89-149 (2022)
DOI: 10.25537/dm.2022v27
Categories: math.NT
Keywords: noncommutative iwasawa theory, arithmetic statistics, rational elliptic curve, adic lie extension, primary selmer group
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2407.09002 [math.NT] (Published 2024-07-12)
Rarity of pseudo-null Iwasawa modules for $p$-adic Lie extensions
arXiv:2108.13480 [math.NT] (Published 2021-08-30)
Arithmetic statistics for Galois deformation rings
arXiv:2104.10337 [math.NT] (Published 2021-04-21)
Local data of rational elliptic curves with non-trivial torsion