{ "id": "2109.13330", "version": "v2", "published": "2021-09-27T20:11:20.000Z", "updated": "2021-12-13T18:00:03.000Z", "title": "Arithmetic Statistics and noncommutative Iwasawa Theory", "authors": [ "Debanjana Kundu", "Antonio Lei", "Anwesh Ray" ], "comment": "50 pages, minor corrections", "journal": "Doc. Math. 27, 89-149 (2022)", "doi": "10.25537/dm.2022v27", "categories": [ "math.NT" ], "abstract": "Let $p$ be an odd prime. Associated to a pair $(E, \\mathcal{F}_\\infty)$ consisting of a rational elliptic curve $E$ and a $p$-adic Lie extension $\\mathcal{F}_\\infty$ of $\\mathbb{Q}$, is the $p$-primary Selmer group $Sel_{p^\\infty}(E/\\mathcal{F}_\\infty)$ of $E$ over $\\mathcal{F}_\\infty$. In this paper, we study the arithmetic statistics for the algebraic structure of this Selmer group. The results provide insights into the asymptotics for the growth of Mordell--Weil ranks of elliptic curves in noncommutative towers.", "revisions": [ { "version": "v2", "updated": "2021-12-13T18:00:03.000Z" } ], "analyses": { "subjects": [ "11R23", "11G05" ], "keywords": [ "noncommutative iwasawa theory", "arithmetic statistics", "rational elliptic curve", "adic lie extension", "primary selmer group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }