arXiv Analytics

Sign in

arXiv:2109.11341 [math.AP]AbstractReferencesReviewsResources

Global wellposedness of NLS in $H^1(\mathbb{R}) + H^s(\mathbb{T})$

Friedrich Klaus, Peer Kunstmann

Published 2021-09-23Version 1

We show global wellposedness for the defocusing cubic nonlinear Schr\"odinger equation (NLS) in $H^1(\mathbb{R}) + H^{3/2+}(\mathbb{T})$, and for the defocusing NLS with polynomial nonlinearities in $H^1(\mathbb{R}) + H^{5/2+}(\mathbb{T})$. This complements local results for the cubic NLS and global results for the quadratic NLS in this hybrid setting.

Related articles: Most relevant | Search more
arXiv:1607.02534 [math.AP] (Published 2016-07-08)
Conserved energies for the cubic NLS in 1-d
arXiv:2008.13352 [math.AP] (Published 2020-08-31)
Multisolitons for the cubic NLS in 1-d and their stability
arXiv:0905.3000 [math.AP] (Published 2009-05-18, updated 2009-11-24)
Global well-posedness for cubic NLS with nonlinear damping