{ "id": "2109.11341", "version": "v1", "published": "2021-09-23T12:41:26.000Z", "updated": "2021-09-23T12:41:26.000Z", "title": "Global wellposedness of NLS in $H^1(\\mathbb{R}) + H^s(\\mathbb{T})$", "authors": [ "Friedrich Klaus", "Peer Kunstmann" ], "comment": "17 pages", "categories": [ "math.AP" ], "abstract": "We show global wellposedness for the defocusing cubic nonlinear Schr\\\"odinger equation (NLS) in $H^1(\\mathbb{R}) + H^{3/2+}(\\mathbb{T})$, and for the defocusing NLS with polynomial nonlinearities in $H^1(\\mathbb{R}) + H^{5/2+}(\\mathbb{T})$. This complements local results for the cubic NLS and global results for the quadratic NLS in this hybrid setting.", "revisions": [ { "version": "v1", "updated": "2021-09-23T12:41:26.000Z" } ], "analyses": { "subjects": [ "35Q55", "37K10" ], "keywords": [ "global wellposedness", "complements local results", "defocusing cubic nonlinear", "global results", "cubic nls" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }