arXiv:2109.03163 [math.PR]AbstractReferencesReviewsResources
Concentration of the complexity of spherical pure $p$-spin models at arbitrary energies
Published 2021-09-07Version 1
We consider critical points of the spherical pure $p$-spin spin glass model with Hamiltonian $H_{N}\left(\boldsymbol{\sigma}\right)=\frac{1}{N^{\left(p-1\right)/2}}\sum_{i_{1},...,i_{p}=1}^{N}J_{i_{1},...,i_{p}}\sigma_{i_{1}}\cdots\sigma_{i_{p}}$, where $\boldsymbol{\sigma}=\left(\sigma_{1},...,\sigma_{N}\right)\in \mathbb{S}^{N-1}:=\left\{ \boldsymbol{\sigma}\in\mathbb{R}^{N}:\,\left\Vert \boldsymbol{\sigma}\right\Vert _{2}=\sqrt{N}\right\} $ and $J_{i_{1},...,i_{p}}$ are i.i.d standard normal variables. Using a second moment analysis, we prove that for $p\geq 32$ and any $E>-E_\infty$, where $E_\infty$ is the (normalized) ground state, the ratio of the number of critical points $\boldsymbol{\sigma}$ with $H_N(\boldsymbol{\sigma})\leq NE$ and its expectation asymptotically concentrates at $1$. This extends to arbitrary $E$ a similar conclusion of [Sub17a].