{ "id": "2109.03163", "version": "v1", "published": "2021-09-07T15:55:17.000Z", "updated": "2021-09-07T15:55:17.000Z", "title": "Concentration of the complexity of spherical pure $p$-spin models at arbitrary energies", "authors": [ "Eliran Subag", "Ofer Zeitouni" ], "categories": [ "math.PR" ], "abstract": "We consider critical points of the spherical pure $p$-spin spin glass model with Hamiltonian $H_{N}\\left(\\boldsymbol{\\sigma}\\right)=\\frac{1}{N^{\\left(p-1\\right)/2}}\\sum_{i_{1},...,i_{p}=1}^{N}J_{i_{1},...,i_{p}}\\sigma_{i_{1}}\\cdots\\sigma_{i_{p}}$, where $\\boldsymbol{\\sigma}=\\left(\\sigma_{1},...,\\sigma_{N}\\right)\\in \\mathbb{S}^{N-1}:=\\left\\{ \\boldsymbol{\\sigma}\\in\\mathbb{R}^{N}:\\,\\left\\Vert \\boldsymbol{\\sigma}\\right\\Vert _{2}=\\sqrt{N}\\right\\} $ and $J_{i_{1},...,i_{p}}$ are i.i.d standard normal variables. Using a second moment analysis, we prove that for $p\\geq 32$ and any $E>-E_\\infty$, where $E_\\infty$ is the (normalized) ground state, the ratio of the number of critical points $\\boldsymbol{\\sigma}$ with $H_N(\\boldsymbol{\\sigma})\\leq NE$ and its expectation asymptotically concentrates at $1$. This extends to arbitrary $E$ a similar conclusion of [Sub17a].", "revisions": [ { "version": "v1", "updated": "2021-09-07T15:55:17.000Z" } ], "analyses": { "keywords": [ "spherical pure", "spin models", "arbitrary energies", "complexity", "spin spin glass model" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }