arXiv:2107.08436 [math.CO]AbstractReferencesReviewsResources
Yet another criterion for the total positivity of Riordan arrays
Published 2021-07-18Version 1
Let $R=\mathcal{R}(d(t),h(t))$ be a Riordan array, where $d(t)=\sum_{n\ge 0}d_nt^n$ and $h(t)=\sum_{n\ge 0}h_nt^n$. We show that if the matrix \begin{equation*} \left[\begin{array}{ccccc} d_0 & h_0 & 0 & 0 &\cdots\\ d_1 & h_1 & h_0 & 0 &\\ d_2 & h_2 & h_1 & h_0 &\\ \vdots&\vdots&&&\ddots \end{array}\right] \end{equation*} is totally positive, then so is the Riordan array $R$.
Related articles: Most relevant | Search more
arXiv:1906.06373 [math.CO] (Published 2019-06-14)
On the halves of a Riordan array and their antecedents
arXiv:2308.02656 [math.CO] (Published 2023-08-04)
Periodicity and Circulant Matrices in the Riordan Array of a Polynomial
arXiv:1601.05645 [math.CO] (Published 2016-01-21)
Total positivity of recursive matrices