{ "id": "2107.08436", "version": "v1", "published": "2021-07-18T13:02:27.000Z", "updated": "2021-07-18T13:02:27.000Z", "title": "Yet another criterion for the total positivity of Riordan arrays", "authors": [ "Jianxi Mao", "Lili Mu", "Yi Wang" ], "categories": [ "math.CO" ], "abstract": "Let $R=\\mathcal{R}(d(t),h(t))$ be a Riordan array, where $d(t)=\\sum_{n\\ge 0}d_nt^n$ and $h(t)=\\sum_{n\\ge 0}h_nt^n$. We show that if the matrix \\begin{equation*} \\left[\\begin{array}{ccccc} d_0 & h_0 & 0 & 0 &\\cdots\\\\ d_1 & h_1 & h_0 & 0 &\\\\ d_2 & h_2 & h_1 & h_0 &\\\\ \\vdots&\\vdots&&&\\ddots \\end{array}\\right] \\end{equation*} is totally positive, then so is the Riordan array $R$.", "revisions": [ { "version": "v1", "updated": "2021-07-18T13:02:27.000Z" } ], "analyses": { "subjects": [ "15B48", "15B36", "15B05" ], "keywords": [ "riordan array", "total positivity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }