arXiv Analytics

Sign in

arXiv:2106.06284 [math.AP]AbstractReferencesReviewsResources

Convergence Towards the Steady State of a Collisionless Gas With Cercignani-Lampis Boundary Condition

Armand Bernou

Published 2021-06-11Version 1

We study the asymptotic behavior of the kinetic free-transport equation enclosed in a regular domain, on which no symmetry assumption is made, with Cercignani-Lampis boundary condition. We give the first proof of existence of a steady state in the case where the temperature at the wall varies, and derive the optimal rate of convergence towards it, in the L1 norm. The strategy is an application of a deterministic version of Harris subgeometric theorem, in the spirit of Ca\~nizo-Mischler (2021) and Bernou (2020). We also investigate rigorously the velocity flow of a model mixing pure diffuse and Cercignani-Lampis boundary conditions with variable temperature, for which we derive an explicit form for the steady state, providing new insights on the role of the Cercignani-Lampis boundary condition in this problem.

Related articles: Most relevant | Search more
arXiv:1009.3004 [math.AP] (Published 2010-09-15)
On the speed of approach to equilibrium for a collisionless gas
arXiv:2308.01694 [math.AP] (Published 2023-08-03)
Asymptotic Behavior of Degenerate Linear Kinetic Equations with Non-Isothermal Boundary Conditions
arXiv:1205.5563 [math.AP] (Published 2012-05-24, updated 2013-04-30)
On the convergence of statistical solutions of the 3D Navier-Stokes-$α$ model as $α$ vanishes