arXiv Analytics

Sign in

arXiv:2308.01694 [math.AP]AbstractReferencesReviewsResources

Asymptotic Behavior of Degenerate Linear Kinetic Equations with Non-Isothermal Boundary Conditions

Armand Bernou

Published 2023-08-03Version 1

We study the degenerate linear Boltzmann equation inside a bounded domain with the Maxwell and the Cercignani-Lampis boundary conditions, two generalizations of the diffuse reflection, with variable temperature. This includes a model of relaxation towards a space-dependent steady state. For both boundary conditions, we prove for the first time the existence of a steady state and a rate of convergence towards it without assumptions on the temperature variations. Our results for the Cercignani-Lampis boundary condition make also no hypotheses on the accommodation coefficients. The proven rate is exponential when a control condition on the degeneracy of the collision operator is satisfied, and only polynomial when this assumption is not met, in line with our previous results regarding the free-transport equation. We also provide a precise description of the different convergence rates, including lower bounds, when the steady state is bounded. Our method yields constructive constants.

Related articles: Most relevant | Search more
arXiv:0801.4798 [math.AP] (Published 2008-01-30)
Asymptotic behavior of global solutions of the $u_t=Δu + u^{p}$
arXiv:1012.4209 [math.AP] (Published 2010-12-19)
Asymptotic behavior of the solution of quasilinear parametric variational inequalities in a beam with a thin neck
arXiv:0911.0234 [math.AP] (Published 2009-11-02)
Asymptotic behavior of solutions to the $σ_k$-Yamabe equation near isolated singularities