arXiv Analytics

Sign in

arXiv:2105.09718 [math.FA]AbstractReferencesReviewsResources

Numerical radius inequalities of $2 \times 2$ operator matrices

Pintu Bhunia, Kallol Paul

Published 2021-05-20Version 1

Several upper and lower bounds for the numerical radius of $2 \times 2$ operator matrices are developed which refine and generalize the earlier related bounds. In particular, we show that if $B,C$ are bounded linear operators on a complex Hilbert space, then \begin{eqnarray*} && \frac{1}{2}\max \left \{ \|B\|, \|C\| \right \}+\frac{1}{4} \left | \|B+C^*\|-\|B-C^*\| \right | &&\leq w \left(\left[\begin{array}{cc} 0 & B C& 0 \end{array}\right]\right)\\ &&\leq \frac{1}{2} \max \left\{\|B\|,\|C\|\right \}+\frac{1}{2}\max \left \{r^{\frac{1}{2}}(|B||C^*|),r^{\frac{1}{2}}(|B^*||C|)\right\}, \end{eqnarray*} where $w(.)$, $r(.)$ and $\|.\|$ are the numerical radius, spectral radius and operator norm of a bounded linear operator, respectively. We also obtain equality conditions for the numerical radius of the operator matrix $\left[\begin{array}{cc} 0 & B C& 0 \end{array}\right]$. As application of results obtained, we show that if $B,C$ are self-adjoint operators then, $\max \Big \{\|B+C\|^2 , \|B-C\|^2 \Big\}\leq \left \|B^2+C^2 \right \|+2w(|B||C|). $

Related articles: Most relevant | Search more
arXiv:2010.12750 [math.FA] (Published 2020-10-24)
Refinements of norm and numerical radius inequalities
arXiv:2006.04389 [math.FA] (Published 2020-06-08)
Bounds for the Davis-Wielandt radius of bounded linear operators
arXiv:1904.12096 [math.FA] (Published 2019-04-27)
Bounds of numerical radius of bounded linear operator