{ "id": "2105.09718", "version": "v1", "published": "2021-05-20T13:12:45.000Z", "updated": "2021-05-20T13:12:45.000Z", "title": "Numerical radius inequalities of $2 \\times 2$ operator matrices", "authors": [ "Pintu Bhunia", "Kallol Paul" ], "comment": "16 pages", "categories": [ "math.FA" ], "abstract": "Several upper and lower bounds for the numerical radius of $2 \\times 2$ operator matrices are developed which refine and generalize the earlier related bounds. In particular, we show that if $B,C$ are bounded linear operators on a complex Hilbert space, then \\begin{eqnarray*} && \\frac{1}{2}\\max \\left \\{ \\|B\\|, \\|C\\| \\right \\}+\\frac{1}{4} \\left | \\|B+C^*\\|-\\|B-C^*\\| \\right | &&\\leq w \\left(\\left[\\begin{array}{cc} 0 & B C& 0 \\end{array}\\right]\\right)\\\\ &&\\leq \\frac{1}{2} \\max \\left\\{\\|B\\|,\\|C\\|\\right \\}+\\frac{1}{2}\\max \\left \\{r^{\\frac{1}{2}}(|B||C^*|),r^{\\frac{1}{2}}(|B^*||C|)\\right\\}, \\end{eqnarray*} where $w(.)$, $r(.)$ and $\\|.\\|$ are the numerical radius, spectral radius and operator norm of a bounded linear operator, respectively. We also obtain equality conditions for the numerical radius of the operator matrix $\\left[\\begin{array}{cc} 0 & B C& 0 \\end{array}\\right]$. As application of results obtained, we show that if $B,C$ are self-adjoint operators then, $\\max \\Big \\{\\|B+C\\|^2 , \\|B-C\\|^2 \\Big\\}\\leq \\left \\|B^2+C^2 \\right \\|+2w(|B||C|). $", "revisions": [ { "version": "v1", "updated": "2021-05-20T13:12:45.000Z" } ], "analyses": { "subjects": [ "47A12", "47A30" ], "keywords": [ "operator matrix", "numerical radius inequalities", "bounded linear operator", "complex hilbert space", "operator norm" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }