arXiv Analytics

Sign in

arXiv:2105.01245 [math.AG]AbstractReferencesReviewsResources

The Du Bois complex of a hypersurface and the minimal exponent

Mircea Mustata, Sebastian Olano, Mihnea Popa, Jakub Witaszek

Published 2021-05-04Version 1

We study the Du Bois complex of a hypersurface $Z$ in a smooth complex algebraic variety in terms of the minimal exponent $\widetilde{\alpha}(Z)$ and give various applications. We show that if $\widetilde{\alpha}(Z)\geq p+1$, then the canonical morphism $\Omega_Z^p\to \underline{\Omega}_Z^p$ is an isomorphism. On the other hand, if $Z$ is singular and $\widetilde{\alpha}(Z)>p\geq 2$, then ${\mathcal H}^{p-1}(\underline{\Omega}_Z^{n-p})\neq 0$.

Related articles: Most relevant | Search more
arXiv:1407.3294 [math.AG] (Published 2014-07-11, updated 2016-03-02)
Kodaira-Saito vanishing and applications
arXiv:0908.0401 [math.AG] (Published 2009-08-04, updated 2009-12-05)
Two local inequalities
arXiv:0706.2372 [math.AG] (Published 2007-06-15)
Prym varieties and applications