{ "id": "2105.01245", "version": "v1", "published": "2021-05-04T01:53:12.000Z", "updated": "2021-05-04T01:53:12.000Z", "title": "The Du Bois complex of a hypersurface and the minimal exponent", "authors": [ "Mircea Mustata", "Sebastian Olano", "Mihnea Popa", "Jakub Witaszek" ], "comment": "16 pages", "categories": [ "math.AG" ], "abstract": "We study the Du Bois complex of a hypersurface $Z$ in a smooth complex algebraic variety in terms of the minimal exponent $\\widetilde{\\alpha}(Z)$ and give various applications. We show that if $\\widetilde{\\alpha}(Z)\\geq p+1$, then the canonical morphism $\\Omega_Z^p\\to \\underline{\\Omega}_Z^p$ is an isomorphism. On the other hand, if $Z$ is singular and $\\widetilde{\\alpha}(Z)>p\\geq 2$, then ${\\mathcal H}^{p-1}(\\underline{\\Omega}_Z^{n-p})\\neq 0$.", "revisions": [ { "version": "v1", "updated": "2021-05-04T01:53:12.000Z" } ], "analyses": { "subjects": [ "14F10", "14F17", "14B05", "32S35" ], "keywords": [ "minimal exponent", "bois complex", "hypersurface", "smooth complex algebraic variety", "applications" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }