arXiv:2104.06673 [math.FA]AbstractReferencesReviewsResources
BV and Sobolev homeomorphisms between metric measure spaces and the plane
Camillo Brena, Daniel Campbell
Published 2021-04-14Version 1
We show that given a homeomorphism $f:G\rightarrow\Omega$ where $G$ is a open subset of $\mathbb{R}^2$ and $\Omega$ is a open subset of a $2$-Ahlfors regular metric measure space supporting a weak $(1,1)$-Poincar\'e inequality, it holds $f\in BV_{\operatorname{loc}}(G,\Omega)$ if and only $f^{-1}\in BV_{\operatorname{loc}}(\Omega,G)$. Further if $f$ satisfies the Luzin N and N$^{-1}$ conditions then $f\in W^{1,1}_{\operatorname{loc}}(G,\Omega)$ if and only if $f^{-1}\in W^{1,1}_{\operatorname{loc}}(\Omega,G)$.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1309.1940 [math.FA] (Published 2013-09-08)
Sobolev homeomorphisms and Brennan's conjecture
Sobolev homeomorphisms and Poincare inequality
arXiv:2409.01260 [math.FA] (Published 2024-09-02)
Weak limits of Sobolev homeomorphisms are one to one