{ "id": "2104.06673", "version": "v1", "published": "2021-04-14T07:35:46.000Z", "updated": "2021-04-14T07:35:46.000Z", "title": "BV and Sobolev homeomorphisms between metric measure spaces and the plane", "authors": [ "Camillo Brena", "Daniel Campbell" ], "categories": [ "math.FA" ], "abstract": "We show that given a homeomorphism $f:G\\rightarrow\\Omega$ where $G$ is a open subset of $\\mathbb{R}^2$ and $\\Omega$ is a open subset of a $2$-Ahlfors regular metric measure space supporting a weak $(1,1)$-Poincar\\'e inequality, it holds $f\\in BV_{\\operatorname{loc}}(G,\\Omega)$ if and only $f^{-1}\\in BV_{\\operatorname{loc}}(\\Omega,G)$. Further if $f$ satisfies the Luzin N and N$^{-1}$ conditions then $f\\in W^{1,1}_{\\operatorname{loc}}(G,\\Omega)$ if and only if $f^{-1}\\in W^{1,1}_{\\operatorname{loc}}(\\Omega,G)$.", "revisions": [ { "version": "v1", "updated": "2021-04-14T07:35:46.000Z" } ], "analyses": { "subjects": [ "26B30", "30L99" ], "keywords": [ "sobolev homeomorphisms", "ahlfors regular metric measure space", "open subset", "regular metric measure space supporting" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }