arXiv Analytics

Sign in

arXiv:2103.16006 [math.AT]AbstractReferencesReviewsResources

On the $C_p$-equivariant dual Steenrod algebra

Krishanu Sankar, Dylan Wilson

Published 2021-03-30Version 1

We compute the $C_p$-equivariant dual Steenrod algebras associated to the constant Mackey functors $\underline{\mathbb{F}}_p$ and $\underline{\mathbb{Z}}_{(p)}$, as $\underline{\mathbb{Z}}_{(p)}$-modules. The $C_p$-spectrum $\underline{\mathbb{F}}_p \otimes \underline{\mathbb{F}}_p$ is not a direct sum of $RO(C_p)$-graded suspensions of $\underline{\mathbb{F}}_p$ when $p$ is odd, in contrast with the classical and $C_2$-equivariant dual Steenrod algebras.

Comments: 15 pages, comments welcome!
Categories: math.AT
Related articles: Most relevant | Search more
arXiv:2205.13427 [math.AT] (Published 2022-05-26)
The $\mathbb{Z}/p$-equivariant dual Steenrod algebra for an odd prime $p$
arXiv:1404.6886 [math.AT] (Published 2014-04-28, updated 2015-01-08)
Subalgebras of the Z/2-equivariant Steenrod algebra
arXiv:1510.06056 [math.AT] (Published 2015-10-20)
The Slice Spectral Sequence for certain $RO(C_{p^n})$-graded Suspensions of $H\underline{\mathbb Z}$