{ "id": "2103.16006", "version": "v1", "published": "2021-03-30T00:39:14.000Z", "updated": "2021-03-30T00:39:14.000Z", "title": "On the $C_p$-equivariant dual Steenrod algebra", "authors": [ "Krishanu Sankar", "Dylan Wilson" ], "comment": "15 pages, comments welcome!", "categories": [ "math.AT" ], "abstract": "We compute the $C_p$-equivariant dual Steenrod algebras associated to the constant Mackey functors $\\underline{\\mathbb{F}}_p$ and $\\underline{\\mathbb{Z}}_{(p)}$, as $\\underline{\\mathbb{Z}}_{(p)}$-modules. The $C_p$-spectrum $\\underline{\\mathbb{F}}_p \\otimes \\underline{\\mathbb{F}}_p$ is not a direct sum of $RO(C_p)$-graded suspensions of $\\underline{\\mathbb{F}}_p$ when $p$ is odd, in contrast with the classical and $C_2$-equivariant dual Steenrod algebras.", "revisions": [ { "version": "v1", "updated": "2021-03-30T00:39:14.000Z" } ], "analyses": { "keywords": [ "equivariant dual steenrod algebra", "constant mackey functors", "direct sum", "graded suspensions" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }