arXiv:2103.08303 [math.CA]AbstractReferencesReviewsResources
Weighted $L^2$-Norms of Gegenbauer polynomials
Johann S. Brauchart, Peter J. Grabner
Published 2021-03-15Version 1
We study integrals of the form \begin{equation*} \int_{-1}^1(C_n^{(\lambda)}(x))^2(1-x)^\alpha (1+x)^\beta\, dx, \end{equation*} where $C_n^{(\lambda)}$ denotes the Gegenbauer-polynomial of index $\lambda>0$ and $\alpha,\beta>-1$. We give exact formulas for the integrals and their generating functions, and obtain asymptotic formulas as $n\to\infty$.
Related articles: Most relevant | Search more
Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut (-1,1)
arXiv:1303.6888 [math.CA] (Published 2013-03-27)
Asymptotic formulas for eigenvalues and eigenfunctions of a new boundary-value-transmission problem
arXiv:1607.05215 [math.CA] (Published 2016-07-18)
Algebraic Generating Functions for Gegenbauer Polynomials