{ "id": "2103.08303", "version": "v1", "published": "2021-03-15T12:03:28.000Z", "updated": "2021-03-15T12:03:28.000Z", "title": "Weighted $L^2$-Norms of Gegenbauer polynomials", "authors": [ "Johann S. Brauchart", "Peter J. Grabner" ], "categories": [ "math.CA", "math.CV" ], "abstract": "We study integrals of the form \\begin{equation*} \\int_{-1}^1(C_n^{(\\lambda)}(x))^2(1-x)^\\alpha (1+x)^\\beta\\, dx, \\end{equation*} where $C_n^{(\\lambda)}$ denotes the Gegenbauer-polynomial of index $\\lambda>0$ and $\\alpha,\\beta>-1$. We give exact formulas for the integrals and their generating functions, and obtain asymptotic formulas as $n\\to\\infty$.", "revisions": [ { "version": "v1", "updated": "2021-03-15T12:03:28.000Z" } ], "analyses": { "subjects": [ "33C45", "33C20", "41A60" ], "keywords": [ "gegenbauer polynomials", "study integrals", "exact formulas", "asymptotic formulas" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }