arXiv:2103.04184 [math.NT]AbstractReferencesReviewsResources
$3$-Principalization over $S_3$-fields
Siham Aouissi, Mohamed Talbi, Daniel C. Mayer, Moulay Chrif Ismaili
Published 2021-03-06Version 1
Let $p\equiv 1\,(\mathrm{mod}\,9)$ be a prime number and $\zeta_3$ be a primitive cube root of unity. Then $\mathrm{k}=\mathbb{Q}(\sqrt[3]{p},\zeta_3)$ is a pure metacyclic field with group $\mathrm{Gal}(\mathrm{k}/\mathbb{Q})\simeq S_3$. In the case that $\mathrm{k}$ possesses a $3$-class group $C_{\mathrm{k},3}$ of type $(9,3)$, the capitulation of $3$-ideal classes of $\mathrm{k}$ in its unramified cyclic cubic extensions is determined, and conclusions concerning the maximal unramified pro-$3$-extension $\mathrm{k}_3^{(\infty)}$ of $\mathrm{k}$ are drawn.
Comments: 23 pages, 7 Figures, 1 Table
Categories: math.NT
Related articles: Most relevant | Search more
The number of $S_4$ fields with given discriminant
arXiv:math/0010286 [math.NT] (Published 2000-10-29)
Comparison of algorithms to calculate quadratic irregularity of prime numbers
arXiv:math/0607588 [math.NT] (Published 2006-07-24)
A Small World Network of Prime Numbers