{ "id": "2103.04184", "version": "v1", "published": "2021-03-06T19:58:36.000Z", "updated": "2021-03-06T19:58:36.000Z", "title": "$3$-Principalization over $S_3$-fields", "authors": [ "Siham Aouissi", "Mohamed Talbi", "Daniel C. Mayer", "Moulay Chrif Ismaili" ], "comment": "23 pages, 7 Figures, 1 Table", "categories": [ "math.NT" ], "abstract": "Let $p\\equiv 1\\,(\\mathrm{mod}\\,9)$ be a prime number and $\\zeta_3$ be a primitive cube root of unity. Then $\\mathrm{k}=\\mathbb{Q}(\\sqrt[3]{p},\\zeta_3)$ is a pure metacyclic field with group $\\mathrm{Gal}(\\mathrm{k}/\\mathbb{Q})\\simeq S_3$. In the case that $\\mathrm{k}$ possesses a $3$-class group $C_{\\mathrm{k},3}$ of type $(9,3)$, the capitulation of $3$-ideal classes of $\\mathrm{k}$ in its unramified cyclic cubic extensions is determined, and conclusions concerning the maximal unramified pro-$3$-extension $\\mathrm{k}_3^{(\\infty)}$ of $\\mathrm{k}$ are drawn.", "revisions": [ { "version": "v1", "updated": "2021-03-06T19:58:36.000Z" } ], "analyses": { "subjects": [ "11R37", "11R29", "11R32", "11R20", "11R16", "20D15", "20E22", "20F05" ], "keywords": [ "principalization", "pure metacyclic field", "unramified cyclic cubic extensions", "primitive cube root", "prime number" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }