arXiv Analytics

Sign in

arXiv:2103.03112 [math.PR]AbstractReferencesReviewsResources

A Note on the Boundedness of Doob Maximal Operators on a Filtered Measure Space

Wei Chen, Jingya Cui

Published 2021-03-04Version 1

Let $M$ be the Doob maximal operator on a filtered measure space and let $v$ be an $A_p$ weight with $1<p<+\infty$. We try proving that $\lVert M f\rVert _{L ^{p}(v) }\leq p'[v]^{\frac{1}{p-1}}_{A_p}\lVert f\rVert _{L ^{p} (v)},$ where $1/p+1/p'=1.$ But we do not find an approach which gives the constant $p'.$ Our results are as follows: $\lVert M f\rVert _{L ^{p}(v) }\leq \min\{p^{\frac{1}{p-1}},~a^{\frac{2}{p}}\eta^{(p'-1)}\}p'[v]^{\frac{1}{p-1}}_{A_p}\lVert f\rVert _{L ^{p} (v)}, $ where $a>1$ and $\eta=\frac{a}{a-1}$ are the constants in the construction of the principal sets. Furthermore, we show that $$\lim\limits_{p\rightarrow+\infty}p^{\frac{1}{p-1}}=\lim\limits_{p\rightarrow+\infty}(\min\limits_{a>1}a^{\frac{2}{p}}\eta^{(p'-1)})=1.$$

Comments: 15 pages
Categories: math.PR
Subjects: 60G46
Related articles: Most relevant | Search more
arXiv:1312.3843 [math.PR] (Published 2013-12-13, updated 2015-01-03)
On the boundedness of solutions of SPDEs
arXiv:2201.11328 [math.PR] (Published 2022-01-27)
On the construction of Bessel house-moving and its properties
arXiv:2006.03587 [math.PR] (Published 2020-06-05)
Diffusions on a space of interval partitions: construction from Bertoin's ${\tt BES}_0(d)$, $d\in(0,1)$