{ "id": "2103.03112", "version": "v1", "published": "2021-03-04T15:34:16.000Z", "updated": "2021-03-04T15:34:16.000Z", "title": "A Note on the Boundedness of Doob Maximal Operators on a Filtered Measure Space", "authors": [ "Wei Chen", "Jingya Cui" ], "comment": "15 pages", "categories": [ "math.PR" ], "abstract": "Let $M$ be the Doob maximal operator on a filtered measure space and let $v$ be an $A_p$ weight with $11$ and $\\eta=\\frac{a}{a-1}$ are the constants in the construction of the principal sets. Furthermore, we show that $$\\lim\\limits_{p\\rightarrow+\\infty}p^{\\frac{1}{p-1}}=\\lim\\limits_{p\\rightarrow+\\infty}(\\min\\limits_{a>1}a^{\\frac{2}{p}}\\eta^{(p'-1)})=1.$$", "revisions": [ { "version": "v1", "updated": "2021-03-04T15:34:16.000Z" } ], "analyses": { "subjects": [ "60G46" ], "keywords": [ "doob maximal operator", "filtered measure space", "boundedness", "principal sets", "construction" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }