arXiv:2102.13259 [math.FA]AbstractReferencesReviewsResources
The numerical range of a periodic tridiagonal operator reduces to the numerical range of a finite matrix
Benjamín A. Itzá-Ortiz, Rubén A. Martínez-Avendaño, Hiroshi Nakasato
Published 2021-02-26Version 1
In this paper we show that the closure of the numerical range of a $n+1$-periodic tridiagonal operator is equal to the numerical range of a $2(n+1)\times 2(n+1)$ complex matrix.
Comments: 11 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:2208.01405 [math.FA] (Published 2022-07-31)
The $C$-numerical range and Unitary dilations
arXiv:2009.01300 [math.FA] (Published 2020-09-02)
Convexity of the orbit-closed $C$-numerical range and majorization
arXiv:2311.00680 [math.FA] (Published 2023-11-01)
On the Operators with Numerical Range in an Ellipse