{ "id": "2102.13259", "version": "v1", "published": "2021-02-26T01:53:46.000Z", "updated": "2021-02-26T01:53:46.000Z", "title": "The numerical range of a periodic tridiagonal operator reduces to the numerical range of a finite matrix", "authors": [ "Benjamín A. Itzá-Ortiz", "Rubén A. Martínez-Avendaño", "Hiroshi Nakasato" ], "comment": "11 pages", "categories": [ "math.FA" ], "abstract": "In this paper we show that the closure of the numerical range of a $n+1$-periodic tridiagonal operator is equal to the numerical range of a $2(n+1)\\times 2(n+1)$ complex matrix.", "revisions": [ { "version": "v1", "updated": "2021-02-26T01:53:46.000Z" } ], "analyses": { "subjects": [ "47A12", "47B02", "47B93" ], "keywords": [ "numerical range", "periodic tridiagonal operator reduces", "finite matrix", "complex matrix" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }