arXiv Analytics

Sign in

arXiv:2102.02605 [math.NT]AbstractReferencesReviewsResources

Linear complexity of some sequences derived from hyperelliptic curves of genus 2

Vishnupriya Anupindi, László Mérai

Published 2021-02-04Version 1

For a given hyperelliptic curve $C$ over a finite field with Jacobian $J_C$, we consider the hyperelliptic analogue of the congruential generator defined by $W_n=W_{n-1}+D$ for $n\geq 1$ and $D,W_0\in J_C$. We show that curves of genus 2 produce sequences with large linear complexity.

Related articles: Most relevant | Search more
arXiv:1212.3465 [math.NT] (Published 2012-12-14, updated 2014-03-18)
Recursive towers of curves over finite fields using graph theory
arXiv:0905.1642 [math.NT] (Published 2009-05-11, updated 2011-11-19)
Fast construction of irreducible polynomials over finite fields
arXiv:0806.0044 [math.NT] (Published 2008-05-31, updated 2008-06-09)
The Riemann Hypothesis for Function Fields over a Finite Field