{ "id": "2102.02605", "version": "v1", "published": "2021-02-04T13:38:45.000Z", "updated": "2021-02-04T13:38:45.000Z", "title": "Linear complexity of some sequences derived from hyperelliptic curves of genus 2", "authors": [ "Vishnupriya Anupindi", "László Mérai" ], "comment": "19 pages", "categories": [ "math.NT", "cs.IT", "math.IT" ], "abstract": "For a given hyperelliptic curve $C$ over a finite field with Jacobian $J_C$, we consider the hyperelliptic analogue of the congruential generator defined by $W_n=W_{n-1}+D$ for $n\\geq 1$ and $D,W_0\\in J_C$. We show that curves of genus 2 produce sequences with large linear complexity.", "revisions": [ { "version": "v1", "updated": "2021-02-04T13:38:45.000Z" } ], "analyses": { "subjects": [ "11G05", "11G20", "11K45", "11T71" ], "keywords": [ "hyperelliptic curve", "large linear complexity", "congruential generator", "finite field", "hyperelliptic analogue" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }