arXiv Analytics

Sign in

arXiv:2102.01550 [math.AP]AbstractReferencesReviewsResources

On the continuity of solutions of quasilinear parabolic equations with generalized Orlicz growth under non-logarithmic conditions

Igor I. Skrypnik, Mykhailo V. Voitovych

Published 2021-02-02Version 1

We prove the continuity of bounded solutions for a wide class of parabolic equations with $(p,q)$-growth $$ u_{t}-{\rm div}\left(g(x,t,|\nabla u|)\,\frac{\nabla u}{|\nabla u|}\right)=0, $$ under the generalized non-logarithmic Zhikov's condition $$ g(x,t,{\rm v}/r)\leqslant c(K)\,g(y,\tau,{\rm v}/r), \quad (x,t), (y,\tau)\in Q_{r,r}(x_{0},t_{0}), \quad 0<{\rm v}\leqslant K\lambda(r), $$ $$ \quad \lim\limits_{r\rightarrow0}\lambda(r)=0, \quad \lim\limits_{r\rightarrow0} \frac{\lambda(r)}{r}=+\infty, \quad \int_{0} \lambda(r)\,\frac{dr}{r}=+\infty. $$ In particular, our results cover new cases of double-phase parabolic equations.

Related articles: Most relevant | Search more
arXiv:2109.08643 [math.AP] (Published 2021-09-17)
Continuity at a boundary point of solutions to quasilinear elliptic equations with generalized Orlicz growth and non-logarithmic conditions
arXiv:2006.08244 [math.AP] (Published 2020-06-15)
Hölder continuity of the minimizer of an obstacle problem with generalized Orlicz growth
arXiv:1306.1281 [math.AP] (Published 2013-06-06)
Time-interior gradient estimates for quasilinear parabolic equations