{ "id": "2102.01550", "version": "v1", "published": "2021-02-02T15:24:14.000Z", "updated": "2021-02-02T15:24:14.000Z", "title": "On the continuity of solutions of quasilinear parabolic equations with generalized Orlicz growth under non-logarithmic conditions", "authors": [ "Igor I. Skrypnik", "Mykhailo V. Voitovych" ], "comment": "32 pages", "categories": [ "math.AP" ], "abstract": "We prove the continuity of bounded solutions for a wide class of parabolic equations with $(p,q)$-growth $$ u_{t}-{\\rm div}\\left(g(x,t,|\\nabla u|)\\,\\frac{\\nabla u}{|\\nabla u|}\\right)=0, $$ under the generalized non-logarithmic Zhikov's condition $$ g(x,t,{\\rm v}/r)\\leqslant c(K)\\,g(y,\\tau,{\\rm v}/r), \\quad (x,t), (y,\\tau)\\in Q_{r,r}(x_{0},t_{0}), \\quad 0<{\\rm v}\\leqslant K\\lambda(r), $$ $$ \\quad \\lim\\limits_{r\\rightarrow0}\\lambda(r)=0, \\quad \\lim\\limits_{r\\rightarrow0} \\frac{\\lambda(r)}{r}=+\\infty, \\quad \\int_{0} \\lambda(r)\\,\\frac{dr}{r}=+\\infty. $$ In particular, our results cover new cases of double-phase parabolic equations.", "revisions": [ { "version": "v1", "updated": "2021-02-02T15:24:14.000Z" } ], "analyses": { "subjects": [ "35B65", "35D30", "35K59", "35K92" ], "keywords": [ "quasilinear parabolic equations", "generalized orlicz growth", "non-logarithmic conditions", "continuity", "double-phase parabolic equations" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }