arXiv Analytics

Sign in

arXiv:2101.06063 [math.DG]AbstractReferencesReviewsResources

Minkowski Inequality on Asymptotically Conical manifolds

Luca Benatti, Mattia Fogagnolo, Lorenzo Mazzieri

Published 2021-01-15Version 1

In this paper we consider Asymptotically Conical Riemannian manifolds $(M,g)$ of dimension $n\geq 3$ with nonnegative Ricci curvature. For every open bounded subset $\Omega\subseteq M$ with smooth boundary we prove that \begin{equation} \left(\frac{\vert{\partial \Omega^*}\vert}{\vert{\mathbb{S}^{n-1}}\vert}\right)^{\!\frac{n-2}{n-1}}\mathrm{AVR}(g)^{\frac{1}{n-1}}\leq \frac{1}{\vert{\mathbb{S}^{n-1}}\vert}\int\limits_{\partial \Omega} \left\vert{ \frac{\mathrm{H}}{n-1}} \right\vert\,\mathrm{d} \sigma , \end{equation} where $\mathrm{H}$ is the mean curvature of $\partial \Omega$, $\mathrm{AVR}(g)$ is the asymptotic volume ratio of $(M,g)$ and $\Omega^*$ is the strictly outward minimising hull of $\Omega$.

Related articles: Most relevant | Search more
arXiv:2103.09737 [math.DG] (Published 2021-03-17)
Scalar curvature, mean curvature and harmonic maps to the circle
arXiv:1905.01664 [math.DG] (Published 2019-05-05)
Recognizing shape via 1st eigenvalue, mean curvature and upper curvature bound
arXiv:1003.6035 [math.DG] (Published 2010-03-31, updated 2010-07-26)
Some geometric properties of hypersurfaces with constant $r$-mean curvature in Euclidean space